Shapes of Hermitian matrices and topology of the corresponding isospectral manifolds

Anton Ayzenberg ayzenberga@gmail.com

Algebraic topology, combinatorics, and mathematical physics.

Sochi, SMC, 2023

based on joint works with

V.Buchstaber V.Cherepanov M.Masuda G.Solomadin K.Sorokin

Graphs and matrix shapes.

  • $\Gamma$ : a graph with vertex set $[n]=\{1,\ldots,n\}$ and edge set $E_\Gamma$.
  • $M_n$ : the set of all Hermitian matrices of size $n$.
  • $A\in M_n$ is called $\Gamma$-shaped if $a_{i,j}=0$ for $\{i,j\}\notin E_\Gamma$.
  • $M_\Gamma$ : the set of all $\Gamma$-shaped matrices
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & \ast & & \\ \ast & & \ast & \\ \ast & & & \ast \end{pmatrix} \]
Star graph Arrowhead matrix
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \end{pmatrix} \]
Full graph Full matrix
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & & \\ \ast & \ast & \ast & \\ & \ast & \ast & \ast \\ & & \ast & \ast \end{pmatrix} \]
Path graph Tridiagonal matrix
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & & & \ast\\ \ast & \ast & \ast & & \\ & \ast & \ast & \ast & \\ & & \ast & \ast & \ast \\ \ast & & & \ast & \ast \end{pmatrix} \]
Cycle graph Periodic tridiag-
onal matrix

Graphs and matrix shapes.

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & & & \ast\\ \ast & \ast & \ast & & \\ & \ast & \ast & \ast & \\ & & \ast & \ast & \ast \\ \ast & & & \ast & \ast \end{pmatrix} \] $\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & \ast & & \\ \ast & & \ast & \\ \ast & & & \ast \end{pmatrix} \]
  • $\lambda=(\lambda_1<\cdots<\lambda_n)$ : a simple spectrum.
  • $M_\lambda$ : the set of all matrices with spectrum $\lambda$.
  • $M_{\Gamma,\lambda}=M_\Gamma\cap M_\lambda$ : the set of all $\Gamma$-shaped matrices with spectrum $\lambda$.
  • If $\lambda$ is generic, then $M_{\Gamma,\lambda}$ is a smooth closed manifold (follows from Sard's lemma).
  • $\dim M_{\Gamma,\lambda}=2|E_\Gamma|$.

Torus action on matrices:

  • Unitary group $U(n)$ acts on $M_n$ by conjugation. It preserves the spectrum.
  • Let $T\subset U(n)$ be the torus of diagonal matrices. We have induced $T$-action on $M_\lambda$.
This is a torus.
Move cursor to pick an element and act on a matrix!
$\circlearrowright$
* * *
* * *
* * *
[edit]
  • $T$-action on $M_\lambda$ preserves $\Gamma$-shape for any graph $\Gamma$.
  • Therefore, the torus $T$ acts on $M_{\Gamma,\lambda}$.

We are interested in toric topology of $M_{\Gamma,\lambda}$

Torus actions. General notions:

  • $T$ : compact torus.
  • $T$ acts smoothly (and effectively) on a smooth manifold $X$.
  • $X^T$ : the set of $T$-fixed points . It is assumed finite and nonempty.
  • $X_T=X\times_TET$ : Borel construction;
  • $p\colon X_T\stackrel{X}{\to} BT$ : Serre fibration;
  • $H^*_T(X)=H^*(X_T)$ : equivariant cohomology module;
  • $E_2^{p,q}\cong H^p(BT)\otimes H^q(X)\Rightarrow H^{p+q}_T(X)$ : Serre spectral sequence.

Definition: $X$ is called equivariantly formal if its Serre spectral sequence degenerates at $E_2$.

Torus actions. General notions:

  • $E_2^{p,q}\cong H^p(BT)\otimes H^q(X)\Rightarrow H^{p+q}_T(X)$ : Serre spectral sequence.

Definition: $X$ is called equivariantly formal if its Serre spectral sequence degenerates at $E_2$.

Equivalently (fixed points are isolated): Equivariant formality $\Leftrightarrow$ $H^{odd}(X)=0$.

Problem for today: which manifolds $M_{\Gamma,\lambda}$ are equiavariantly formal?

Examples: full matrices

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast \end{pmatrix} \]
Full graph Full matrix
  • Full graph corresponds to the manifold $M_\lambda$ itself.
  • $U(n)$ acts transitively on $M_\lambda$ with stabilizer $T^n$.
  • Hence $M_\lambda\cong U(n)/T=Fl_n$, the full flag variety.
  • It is equivariantly formal.

Examples: tridiagonal

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & & \\ \ast & \ast & \ast & \\ & \ast & \ast & \ast \\ & & \ast & \ast \end{pmatrix} \]
Path graph $\mathbb{I}_n$ Tridiagonal matrix
  • Path graph corresponds to tridiagonal matrices.
  • The manifold $M_{\mathbb{I}_n,\lambda}$ was introduced and studied by Tomei'84.
  • Tomei proved that $M_{\mathbb{I}_n,\lambda}/T$ is a permutohedron.
  • In modern terminology, $M_{\mathbb{I}_n,\lambda}$ is a quasitoric manifold over permutohedron.
  • $M_{\mathbb{I}_n,\lambda}$ is equivariantly formal.

Examples: staircase

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & & \\ \ast & \ast & \ast & \ast & \\ \ast & \ast & \ast & \ast & \\ & \ast & \ast & \ast & \ast \\ & & & \ast & \ast \\ \end{pmatrix} \]
  • Spaces like $M_{\Gamma,\lambda}$ appeared in the literature (de Mari, etc.)
  • A.-Buchtaber'21 noticed that $M_{\Gamma,\lambda}$ shares many common properties with corresponding regular semisimple Hessenberg varieties. We called them twins.
  • Using Morse theory, we proved that $M_{\Gamma,\lambda}$ admits even-dimensional cell structure.
  • Hence $M_{\Gamma,\lambda}$ is equivariantly formal.

Examples: arrowhead

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & \ast & & \\ \ast & & \ast & \\ \ast & & & \ast \end{pmatrix} \]
Star graph $St_n$ Arrowhead matrix
  • Torus action has complexity $0$. This is a torus manifold.
Theorem (Gal-Januszkiewicz, unpublished): $M_{St_3,\lambda}/T$ is a solid torus with boundary subdivided into hexagons.
Therefore, from Masuda-Panov theorem it follows that
$M_{St_3,\lambda}$ is not equivariantly formal.

Examples: periodic tridiagonal

$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & & & \ast\\ \ast & \ast & \ast & & \\ & \ast & \ast & \ast & \\ & & \ast & \ast & \ast \\ \ast & & & \ast & \ast \end{pmatrix} \]
Cycle graph $Cy_n$ Periodic tridiag-
onal matrix
  • Torus action of complexity $1$ in general position.
  • A.'20: $M_{Cy_n,\lambda}$ is not equivariantly formal for $n\geqslant 4$.
  • $\pi_1(M_{Cy_n,\lambda})\cong \mathbb{Z}^{n-3}$ (if $M_{Cy_n,\lambda}$ is smooth).
A.-Masuda'19: If there is an equivariantly formal torus action of complexity $1$ in general position on $X$, then $X/T$ is a homology sphere.

But I proved: $M_{Cy_n,\lambda}/T\cong S^4\times T^{n-3}$.

Indifference graphs:

Which graphs correspond to staircase matrices?

Definition: Graph $\Gamma$ is called indifference graph if it is the intersection graph of some collection of unit intervals on a line $\mathbb{R}$.

Also called unit interval graphs or proper interval graphs.

Theorem (Mertzios'08): $\Gamma$ represents staircase matrices $\Leftrightarrow$ $\Gamma$ is an indifference graph.
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast & & \\ \ast & \ast & \ast & \ast & \\ \ast & \ast & \ast & \ast & \\ & \ast & \ast & \ast & \ast \\ & & & \ast & \ast \\ \end{pmatrix} \]

Warning:

Some matrices are staircase even if they don't look so:
$\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \ast \\ \ast & \ast & \\ \ast & & \ast \end{pmatrix} \] $\Rightarrow$ \[ \begin{pmatrix} \ast & \ast & \\ \ast & \ast & \ast \\ & \ast & \ast \end{pmatrix} \]
Spaces $M_{\Gamma,\lambda}$ in these two cases are homeomorphic. The space depends only on a graph.

Result

For any graph $\Gamma$ on $n$ vertices we have:
  • $T$-action on $M_{\Gamma,\lambda}$ has $n!$ many fixed points,
  • therefore $\beta_{even}-\beta_{odd}=\chi(M_{\Gamma,\lambda})=n!$,
  • therefore $\beta(M_{\Gamma,\lambda})\geqslant n!$.

Theorem: The following conditions are equivalent:
  1. $\Gamma$ is an indifference graph,
  2. $M_{\Gamma,\lambda}$ is equivariantly formal;
  3. $\beta(M_{\Gamma,\lambda})=n!$.

Topological complexity

Corollary: If $\Gamma$ is not indifference, then
  • $\beta(M_{\Gamma,\lambda})>n!$, hence
  • any Morse-Smale flow on $M_{\Gamma,\lambda}$ has $>n!$ stationary points.

This gives an applied math intuition behind this result.

QR-algorithm

Original matrix:
0
0 0
0 0 0
  At each step we represent a matrix $A_i$ as $Q\cdot R$ and take $A_{i+1}=R\cdot Q$. Here $Q$ is orgthogonal, $R$ is upper triangular.
Fill in the matrix above.
Press "u" to upload.
Press "q" to make QR step.

After 0 iterations:
* * * *
* * * *
* * * *
* * * *

QR-algorithm

  • QR-algorithm preserves spectrum and symmetricity.
  • It has $n!$ limit points (diagonal matrices with spectrum at the diagonal).
  • It is a Morse-Smale cascade on $M_\lambda$.
  • QR-algorithm preserves staircase shape.
  • It is a flow on $M_{\Gamma,\lambda}$ for indifference graph $\Gamma$.

Toda flow

  • Continuous version of QR-algorithm.
  • Same properties.
  • Honest gradient flow of a Morse function.

How we prove:

We need to prove

"$\Gamma$ is not an indifference graph" $\Rightarrow$ "$M_{\Gamma,\lambda}$ is not formal".

Lemma: If $M_{\Gamma,\lambda}$ is formal and $\Gamma'$ is an induced subgraph of $\Gamma$, then $M_{\Gamma',\lambda}$ is also formal.
Induced Not induced
Conclusion: we only need to prove non-formality for "minimal" non-indifference graphs.

How we prove:

Theorem (Roberts'70): $\Gamma$ is not an indifference graph $\Leftrightarrow$ it has one of the following induced subgraphs:
Claw $St_3$ Holes $Cy_k$, $k\geq 4$ $Net$ $Sun$
Conclusion: we only need to prove non-formality for this list of forbidden graphs.
  • Claw $St_3$ and Holes $Cy_n$ ($n\geqslant 4$) are already studied: non-formality of $M_{\Gamma,\lambda}$ is proved.
  • It remains to prove non-formality for $Net$ and $Sun$.

To do this, we developed a general approach.

Face submanifolds:

  • Let $H\subseteq T$ be a connected subgroup.
Definition:
  • A connected component of the fixed point manifold $X^H$ is called an invariant submanifold.
  • If an invariant submanifold intersects $X^T$, it is called a face submanifold.
  • The rank of an invariant (face) submanifold $Y$ is the dimension of generic toric orbit on $Y$.
  • Face submanifolds are partially ordered by inclusion.
  • Fixed points = face submanifolds of rank $0$.
  • The greatest face submanifold is $X$ itself. It has rank $\dim T$.
Definition: The poset of all face submanifolds is denoted $S(X)$. It is graded by ranks.

Face poset and formality

  • $S(X)_r$ : the $r$-skeleton, the poset of all face submanifolds of rank $\leqslant r$.
  • We say a $T$-action has GKM type if every face submanifold of rank $1$ is a $2$-sphere.
  • Every $M_{\Gamma,\lambda}$ has GKM type.
  • Let $|S|$ denote the geometrical realization of a poset $S$.
Theorem (A.-Masuda-Solomadin'22):
Assume an $T$-action on $X$ is equivariantly formal and $\dim T\geqslant 4$. Then for any $r\geqslant 4$ we have \[ \tilde{H}^i(|S(X)_r|)=0 \quad\text{ for }\quad i\leq 3. \] In other words, the skeleton $|S(X)_r|$ is $3$-acyclic.

Cases:

$Net$

$Sun$

\[ \begin{pmatrix} \ast & \ast & \ast & \ast & & \\ \ast & \ast & \ast & & \ast & \\ \ast & \ast & \ast & & & \ast \\ \ast & & & \ast & & \\ & \ast & & & \ast & \\ & & \ast & & & \ast \\ \end{pmatrix}, \begin{pmatrix} \ast & \ast & \ast & & \ast & \ast \\ \ast & \ast & \ast & \ast & & \ast\\ \ast & \ast & \ast & \ast & \ast & \\ & \ast & \ast & \ast & & \\ \ast& & \ast & & \ast & \\ \ast & \ast & & & & \ast \\ \end{pmatrix} \]
$M_{Net,\lambda}$ is $12$-dim manifold with $5$-dim torus action.
$M_{Sun,\lambda}$ is $18$-dim with $5$-dim torus action.
It is impossible to compute $H^{odd}$ of these spaces...
...however, we can describe the poset $S(M_{\Gamma,\lambda})$ and compute its homology in low degrees.
So we did the following:
  • A.-Buchstaber'22: Described the poset $S(M_{\Gamma,\lambda})$. It is isomorphic to the core of the graphicahedron of $\Gamma$.
  • Assumption $M_{Net,\lambda}$ and $M_{Sun,\lambda}$ are formal, implies $|S(M_{Net,\lambda})_4|$ and $|S(M_{Sun,\lambda})_4|$ are 3-acyclic.
  • So we tried to check, whether this is true.

Cases:

$Net$

$Sun$

\[ \begin{pmatrix} \ast & \ast & \ast & \ast & & \\ \ast & \ast & \ast & & \ast & \\ \ast & \ast & \ast & & & \ast \\ \ast & & & \ast & & \\ & \ast & & & \ast & \\ & & \ast & & & \ast \\ \end{pmatrix}, \begin{pmatrix} \ast & \ast & \ast & & \ast & \ast \\ \ast & \ast & \ast & \ast & & \ast\\ \ast & \ast & \ast & \ast & \ast & \\ & \ast & \ast & \ast & & \\ \ast& & \ast & & \ast & \\ \ast & \ast & & & & \ast \\ \end{pmatrix} \]
We unpacked our computers, ran Sage, and calculated:
Theorem (A.-Sorokin'22): $|S(M_{Net,\lambda})_4|$ and $|S(M_{Sun,\lambda})_4|$ are 2-acyclic. But $\beta_3(|S(M_{Net,\lambda})_4|)=5$ and $\beta_3(|S(M_{Sun,\lambda})_4|)=5$. *Coefficients in $\mathbb{Z}_2$.
Since face posets are not $3$-acyclic, manifolds are not equivariantly formal.
This finalizes the proof of the main theorem.

Thank you for your attention!

Our papers related to this work:

  1. A.A.Ayzenberg, V.M.Buchstaber, Manifolds of isospectral arrow matrices, Sbornik: Mathematics 212:5 (2021), 3-36. [link]
  2. A.A.Ayzenberg, V.M.Buchstaber, Manifolds of isospectral matrices and Hessenberg varieties, IMRN 2021:21 (2021), 16671-16692. [link]
  3. A.Ayzenberg, Space of isospectral periodic tridiagonal matrices, Alg. and Geom. Topology 20 (2020), 2957-2994. [link]
  4. A.Ayzenberg, M.Masuda, Orbit spaces of equivariantly formal torus actions, Transformation Groups, 2023, preprint. [link]
  5. A.Ayzenberg, V.Cherepanov, Matroids in toric topology, 2022, [preprint].
  6. A.Ayzenberg, M.Masuda, G.Solomadin, How is a graph not like a manifold?, to appear in Sbornik: Mathematics [link].
  7. A.Ayzenberg, V.Buchstaber, Cluster-permutohedra and submanifolds of flag varieties with torus actions, IMRN 2023 [link].
  8. A.Ayzenberg, K.Sorokin, Topological approach to diagonalization algorithms, 2022, preprint. [preprint].

Technical reference:

An extended version of this presentation is available here. Source code and instructions on usage lie on Github.